

REVIEW ARTICLE

Diagnosis of irritable bowel syndrome

Max J. Schmulson^{1,2,3}*, Christian L. Cruz-Rico¹, Gabriel Mendoza-Domínguez^{1,4}, Sara A. Zaragoza-Galicia¹, and Alizon S. Morales-Guzmán^{1,5}

¹Laboratorio de Hígado, Páncreas y Motilidad, Department of Experimental Medicine Dr. Ruy Pérez-Tamayo, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM); ²Gastroenterology and Gastrointestinal Motility Service, Clínica Lomas Altas, S.C.; ³Gastroenterology and Endoscopy Service, Group Medical Practice, Centro Médico ABC; ⁴Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM; ⁵Escuela de Posgrado en Biología Experimental, Dirección de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa. Mexico City, Mexico

Abstract

Irritable bowel syndrome (IBS) is one of the most frequent reasons for gastroenterology consultation. Is characterized by abdominal pain and altered bowel habits without structural damage. Diagnosis is based on the Rome IV criteria, which enable symptom-based identification without the need for invasive tests if no alarm signs are present. This review provides practical guidance for clinicians on applying Rome criteria, performing effective differential diagnoses, and selecting the minimal necessary tests to rule out organic disease. Emerging biomarkers are also reviewed, such as fecal calprotectin, anti-CdtB and anti-vinculin antibodies, and bile acid malabsorption tests. Although their clinical use is still limited, they may aid diagnosis in atypical presentations or when greater diagnostic certainty is needed. The multidimensional clinical profile is introduced as a useful tool to assess psychosocial impact, perceived severity, and functional comorbidities, thus supporting personalized care. This article aims to support timely and accurate diagnosis of IBS in everyday clinical practice.

Keywords: Approach. Diagnosis. Biomarkers. Irritable bowel syndrome. Disorders of gut-brain interaction.

Diagnóstico del síndrome de intestino irritable

Resumen

El síndrome de intestino irritable (SII) es uno de los motivos más frecuentes de consulta en gastroenterología. Se caracteriza por dolor abdominal y alteraciones del hábito intestinal sin evidencia de daño estructural. El diagnóstico se basa en los criterios de Roma IV, los cuales permiten identificar a los pacientes con SII mediante síntomas clínicos, sin necesidad de estudios invasivos si no hay signos de alarma. Esta revisión ofrece una guía práctica para el médico clínico sobre cómo aplicar estos criterios, realizar un diagnóstico diferencial efectivo y seleccionar las pruebas mínimas necesarias para descartar otras enfermedades. Además, se revisan biomarcadores emergentes que podrían apoyar el diagnóstico de SII, como la calprotectina fecal, los anticuerpos anti-CdtB y antivinculina, y pruebas para malabsorción de ácidos biliares. Aunque su uso clínico aún es limitado, representan una herramienta valiosa en casos atípicos o cuando se requiere mayor certeza diagnóstica. También se presenta el perfil clínico multidimensional, un enfoque que permite valorar otros aspectos relevantes como el impacto psicosocial, la percepción de gravedad y la presencia de comorbilidad funcional, lo cual favorece una atención más personalizada. Este artículo busca facilitar el diagnóstico oportuno y adecuado del SII en la práctica clínica cotidiana.

Palabras clave: Abordaje. Diagnóstico. Biomarcadores. Síndrome de intestino irritable. Trastorno de la interacción intestino-cerebro.

*Correspondence:

Max J. Schmulson E-mail: mschmulson@gmail.com Date of reception: 01-04-2025

Date of acceptance: 30-04-2025

DOI: 10.24875/CGME.M25000006

Avaliable online: 17-09-2025 Clín. Gastroenterol. Méx. (Eng). 2025;1(1):42-53 www.clinicasgastroenterologiademexico.com

3081-7153 / © 2025 Asociación Mexicana de Gastroenterología. Publicado por Permanyer. Éste es un artículo open access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Irritable bowel syndrome (IBS) is a disorder of gutbrain interaction (DGBI) whose pathophysiology is related to any combination of alterations in motility. visceral sensitivity, epithelial barrier, mucosal immune function, intestinal dysbiosis, or processing at the level of the central nervous system1. Due to its multifactorial nature, diagnosis is based on symptom criteria. In the Global Epidemiological Study of the Rome Foundation, using the most recent Rome IV criteria (see below), it was found that, in Mexico, 40.2% of the general population met criteria for at least one DGBI, and the prevalence of IBS was 4%2. IBS is commonly referred to as the main reason for consultation with a gastroenterologist^{3,4}; however, among subjects reporting symptoms compatible with IBS, only a little more than half sought medical attention, mainly consulting general practitioners, followed by gastroenterologists2. In fact, in a recent study we conducted in Mexico, it was determined that IBS ranked only seventh among reasons for consultation with a specialized gastroenterologist⁵.

The diagnosis of IBS is based on the application of the Rome criteria, which have evolved according to evidence up to the most recent Rome IV version⁶, allowing the disorder to be identified from specific symptoms. Nevertheless, due to the overlap of symptoms with those of other intestinal diseases, an adequate evaluation is essential to rule out conditions with similar manifestations, such as inflammatory bowel disease (IBD), celiac disease, or malabsorption disorders¹.

In this review, we will analyze the Rome IV criteria for IBS, the Bristol Stool Scale, the differential diagnosis, alarm features, clinical criteria, diagnostic tests and biomarkers, and the multidimensional clinical profile (MDCP). The aim is for this article to serve as a comprehensive guide for the clinician interested in diagnosing IBS, mainly in Mexico, but also for researchers in the field.

Rome IV diagnostic criteria

In the 1980s, DGBIs were referred to as "functional GI disorders," meaning any condition with gastrointestinal symptomatology when all other possible explanations had been ruled out. As a condition lacking biomarkers, it was viewed as a "diagnosis of exclusion." A 1988 review article emphasized the intermittency of abdominal pain and the variability of stool consistency in patients. This was an important precedent for the creation of the Rome Foundation, whose members published their first book (Rome I) in 1994, thereby

originating the first diagnostic criteria for the so-called "functional gastrointestinal disorders." These have been modified three more times in accordance with available evidence: in 2000 (Rome II), 2006 (Rome III), and most recently in 2016 (Rome IV)⁸. These criteria classify DGBIs into 32 diagnostic categories distributed by target organ: esophageal, gastroduodenal, intestinal, anorectal, biliary tract, and centrally mediated abdominal pain⁹. IBS belongs to the intestinal disorders and is the most investigated, though not necessarily the most prevalent (currently functional constipation holds that position)¹⁰. Of note, the Rome IV criteria are a work in progress, and the new iteration, Rome V, is under development and will be published in May 2026¹¹.

Due to the multifactorial nature and the absence of diagnostic biomarkers for IBS—as with other DGBIs—it is necessary that patients first meet the Rome IV diagnostic criteria. However, while some DGBIs are diagnosed exclusively on clinical criteria or symptoms (such as IBS and functional constipation), others require additional diagnostic tests, such as reflux hypersensitivity and functional heartburn, which require pH-impedance monitoring, or pelvic floor dyssynergia/anismus, which requires anorectal manometry¹².

As noted above, to date, no reliable biomarkers have been identified for IBS. Although there is intense research to identify them¹³, no blood, urine, stool, imaging, endoscopy, or biopsy study can replace the use of symptom-based criteria (Rome criteria)¹⁴.

The Rome IV diagnostic criteria for IBS are as follows⁶:

- Recurrent abdominal pain, on average, at least 1 day per week in the last 3 months; and
- Associated with at least 2 of the following:
 - Defecation (pain improves or worsens).
 - · A change in stool frequency (more or less frequent).
 - A change in stool form (harder or looser than normal).

Symptoms must be present for the last 3 months, with symptom onset at least 6 months before diagnosis⁶.

It is important to consider the most relevant changes introduced in the Rome IV version vs Rome III. In particular, the most significant change is the elimination of the concept of "discomfort" from the definition (Rome III required "abdominal pain or discomfort"), with Rome IV now requiring abdominal pain alone, at least once per week, to establish the diagnosis. In Rome III, pain or discomfort had to be present two or more times per month, making the criteria less strict. Moreover, Rome III considered that abdominal pain could only improve with defecation, whereas Rome IV also includes the possibility that pain may worsen with defecation¹⁵.

Regarding the changes introduced in Rome IV, the modification of the timeframe appears to be the most important factor influencing global IBS prevalence, which decreased by more than 50% from Rome III to Rome IV (10.1% to 4.1%)¹⁶.

Secondly, IBS is categorized into 1 of 4 possible subtypes according to the predominant bowel habit: IBS with diarrhea (IBS-D), IBS with constipation (IBS-C), mixed IBS (IBS-M), and unclassified IBS (IBS-U). For classification, it is necessary to consider the type of abnormal bowel movements that predominate in the patient, using a 25% threshold during days with abnormal stools (Table 1). This means that if a patient reports altered bowel movements (liquid, very hard, or both) on 5 of 7 days per week, the 5 days are considered as the 100% basis; conversely, if abnormal evacuations occur all 7 days, then the 7 days are taken as the 100% basis⁶.

Bristol stool form scale

The IBS subtype is based primarily on the Bristol Stool Form Scale, which distinguishes seven stool types according to intestinal transit (Fig.1).

Differential diagnosis

A large number of organic disorders may meet the same criteria as IBS: however, there are associations more common in IBS than in organic disease, which support the diagnosis of IBS (Table 2)17. Examples: an unpredictable bowel habit (≥ 3 stool forms per week) is more common in IBS-D, while a greater number of consecutive days without evacuation is more strongly associated with IBS-C. Urgency and mucus in stools are more common in IBS-D, while excessive straining and incomplete evacuation are more common in IBS-C¹⁸. Extraintestinal digestive symptoms may include dyspepsia, early satiety, nausea, epigastric pain, and postprandial fullness^{18,19}. In a Mexican study we conducted in patients with IBS (Rome III criteria), those with IBS-M reported higher frequency and intensity of halitosis, vomiting, and belching, while IBS-C patients had more straining, and IBS-D patients had more urgency, fecal incontinence, and mucus in stools²⁰. These symptoms occur in up to one-third of patients and are correlated with increased work disability and need for medical care²¹.

Extraintestinal symptoms include fibromyalgia, chronic fatigue syndrome, chronic pelvic pain, temporomandibular joint disorder, headache, neck and back pain, myalgias, fatigue, dizziness, migraine, palpitations, chest

Table 1. Subtypes of irritable bowel syndrome according to Rome IV

Subtype	Criteria	Patients
IBS-D	At least 25% of stools are Bristol types 6 or 7, and < 25% are Bristol types 1 and 2	Report that abnormal bowel movements are usually diarrhea
IBS-C	At least 25% of stools are Bristol types 1 or 2, and < 25% are Bristol types 6 and 7	Report that abnormal bowel movements are usually constipation
IBS-M	At least 25% of stools are Bristol types 1 and 2, and at least 25% are Bristol types 6 or 7	Report that abnormal bowel movements are usually both constipation and diarrhea
IBS-U	Meets diagnostic criteria for IBS, but no stool form predominates beyond 25%	Report that abnormal bowel movements are rare

D: diarrhea; C: constipation; M: mixed; U: unclassified; IBS: irritable bowel syndrome.

pain, hot flashes, sleep disorders, decreased libido, dyspareunia, urinary urgency and frequency, nocturia, anxiety, depression, dyspnea, asthma, cough, pruritus, and halitosis^{22,23}.

Alarm features

As mentioned above, the diagnosis of IBS is based on information obtained from the medical history, and patients must meet the criteria defined by Rome IV. Of note, up to 24% of patients with organic diseases may fulfill Rome criteria, including inflammatory bowel disease, celiac disease, lactose intolerance, and microscopic colitis, among others²⁴. Therefore, a complete physical examination must be performed to rule out alarm features and to reassure the patient that no other disease is present. Alarm features that should be systematically sought include unintentional weight loss (>10% in 3 months), blood in the stool not caused by hemorrhoids or anal fissures, predominantly nocturnal diarrhea, fever, and family history of inflammatory bowel disease or celiac disease⁶. For example, in IBS-D, the absence of alarm features reduces the likelihood ratio of an organic disease²⁵, although alarm features have low sensitivity and specificity for the diagnosis of colorectal cancer²⁶. Thus, the selection of diagnostic tests should be individually guided by the specific clinical context^{6,27}.

Figure 1. Bristol stool form scale.

Table 2. Differential diagnoses of irritable bowel syndrome in the routine clinical practice

Chronic diarrhea	Gastrointestinal	Celiac disease Small intestinal bacterial overgrowth Chronic infection Colonic neoplasia Inflammatory bowel disease Ulcerative colitis Crohn's disease
	Other	Hyperthyroidism Hypoparathyroidism Diabetes Drugs (proton pump inhibitors, prokinetics, metformin, colchicine)
Chronic constipation	Gastrointestinal	Functional constipation Opioid-induced constipation Functional defecation disorders Defecatory dyssynergia Inadequate defecatory propulsion Slow-transit constipation Defecatory disorders
	Other	Drugs (calcium channel blockers, nonsteroidal anti-inflammatory drugs) Parkinson's disease Diabetes mellitus Connective tissue diseases Ehlers-Danlos syndrome Mood disorders

Accordingly, once the Rome IV diagnostic criteria for IBS are confirmed, and given that ruling out an organic cause for symptoms is fundamental, it is necessary to

determine precisely which complementary studies are required to confirm the functional nature of the disorder (see sections on biomarkers and the MDCP).

Clinical criteria

The Rome criteria have high sensitivity for diagnosing IBS based on symptoms. These criteria are of particular value for epidemiological research, pathophysiological studies, and clinical trials^{1,8}. While they serve to guide diagnosis in clinical practice, they can be difficult to apply in real-world settings, thus posing a challenge for physicians and gastroenterologists. This difficulty arises because many patients do not meet the required symptom timeframe, a situation referred to as a "subthreshold diagnosis." Nevertheless, this group of patients often receives the same treatment as those who fully meet the criteria28. Of note, in general, patients suspected of having IBS seek medical care when their symptoms are bothersome enough to affect their daily lives²⁹. In this context, and in view of the limitations of the Rome criteria for clinical application, the Board of Directors of the Rome Foundation developed, by consensus, a modification of the Rome IV diagnostic criteria for use in clinical practice, known as the "clinical criteria"8. Four factors were proposed for these clinical criteria:

- Nature of symptoms: Symptoms must fulfill the qualitative characteristics of the Rome IV criteria, which have been supported and validated by epidemiological, factorial analysis, and clinical cohort studies, among others.
- Distress/interference with daily life: It has been recommended to consider as a clinical criterion the patient's own report that symptoms are sufficiently bothersome to interfere with activities of daily life.
- Frequency of symptoms: Symptom frequency should not be considered a mandatory criterion for IBS diagnosis, since patients usually seek medical consultation because symptoms impact their daily lives, even if frequency is below the Rome IV threshold.
- Duration of symptoms (timeframe): While Rome IV requires symptoms during the last 3 months, with onset at least 6 months before diagnosis, it is acceptable to consider symptoms present within the past 8 weeks, provided that other diagnoses have been excluded. Two exceptions to this duration requirement exist: a) when the physician needs to make an early diagnosis and is confident that other diseases have been excluded; and b) in disorders where symptoms occur infrequently and intermittently (eg, cyclic vomiting syndrome, abdominal migraine, biliary pain, or proctalgia fugax).

Although these guidelines are recommended to improve the implementation of the Rome criteria in

clinical practice, physicians must still evaluate symptom patterns, risk factors, and other patient characteristics to determine whether additional testing is necessary. If all elements are consistent with IBS, the diagnosis can be established with confidence, even with lower frequency and shorter duration of symptoms.

Minimal diagnostic tests and biomarkers

Currently, the only recommended clinical use of biomarkers in IBS consists of serological tests for tissue transglutaminase immunoglobulin A (IgA), total IgA, blood C-reactive protein (CRP), and fecal calprotectin30. These markers do not confirm the diagnosis of IBS (inclusion biomarkers) but are instead used to exclude celiac disease and inflammatory bowel disease in patients with suspected IBS-D (exclusion biomarkers) and atypical clinical features or absence of alarm signs. For this reason, in the absence of a specific inclusion biomarker, the diagnosis of IBS remains symptom-based⁶. Nonetheless, although the Rome criteria have proven useful in clinical trials, they may show certain limitations in daily medical practice due to the clinical heterogeneity of patients, as well as the overlap of symptoms with those of other conditions³¹.

If IBS diagnosis were to be based strictly on a "diagnosis of exclusion," patient work-up could be so extensive that it would take months or even years to establish the correct diagnosis³², since physicians would need to exclude IBD, celiac disease, food intolerances (fructose, lactose), and even GI tumors³³. Current recommendations state that early diagnosis should be made based on symptoms, with limited use of extensive, costly, or invasive testing³⁴. Nonetheless, many patients continue to undergo numerous diagnostic studies, which delay both diagnosis and appropriate treatment. For example, in a study conducted among gastroenterologists who are members of the Latin American Society of Neurogastroenterology-experts in IBS diagnosis-98% reported using Rome IV criteria to diagnose IBS. All ordered laboratory tests in the presence of alarm signs, and 90% requested colonoscopy in patients over 50 years, as established in various international guidelines. Despite this, 73% ordered abdominal-pelvic CT scans, demonstrating overuse of unnecessary studies for diagnosis³⁵. This highlights the crucial importance of investigating specific biomarkers through accessible, minimally invasive procedures that increase diagnostic precision and support improved treatment strategies for IBS.

Of note, a biomarker is defined as an objective characteristic that serves as an indicator of normal or pathological biological processes, or of responses to an exposure or intervention³⁶. Biomarkers may have different natures—from molecular to histological, radiological, or imaging features, or physiological characteristics-and may be applied in different contexts: screening, diagnosis, monitoring, pharmacodynamics, therapeutic response, prediction, or prognosis³⁶. In other words, the ideal biomarker should measure a biological component, structure, or function that influences or can predict the course of a disorder or disease³⁷. Similarly, it should have high sensitivity and specificity, reproducibility, cost-effectiveness, low interobserver variability, and accessibility for both the healthcare system and the patient³⁸. Searching for biomarkers that meet these features or purposes is of vital importance for IBS diagnosis and management.

To date, no specific biomarker exists for IBS diagnosis, but some have been studied as supportive tools. In 2009, Lembo et al³⁹ published a study developing and validating a diagnostic test based on serum biomarkers to differentiate IBS patients from those with other GI diseases and from healthy subjects³⁹. The study included 10 biomarkers: interleukin-1\beta (IL-1\beta), growth-related oncogene- α (GRO- α), brain-derived neurotrophic factor (BDNF), anti-Saccharomyces cerevisiae antibody (ASCA IgA), anti-flagellin CBir1 antibody (anti-CBir1), anti-tissue transglutaminase antibody (anti-tTG), TNF-like weak inducer of apoptosis (TWEAK), antineutrophil cytoplasmic antibody (ANCA), tissue inhibitor of metalloproteinases-1 (TIMP-1), and neutrophil gelatinase-associated lipocalin (NGAL). The test showed 50% sensitivity, 88% specificity, a positive predictive value of 81%, and a negative predictive value of 64%. Although overall sensitivity was low, the high specificity suggests that a positive result could improve diagnostic accuracy for IBS39. Finally, this serum biomarker panel may be useful as an adjunct early in clinical evaluation, particularly in atypical presentations and to avoid unnecessary invasive tests, especially in distinguishing IBS from nonfunctional GI disorders. However, this panel does not replace clinical assessment and should not be used in isolation³⁹.

Then, Jones et al⁴⁰ proposed a panel of 34 biomarkers combined with psychological variables (anxiety, depression, somatization, stress) to differentiate IBS patients from healthy controls and among IBS subtypes. This test added a broader, modern approach incorporating the 10 biomarkers from Lembo's study³⁹

plus 24 new ones, including 14 gene-expression markers in peripheral blood and 10 new serological markers. The 34-biomarker panel demonstrated 81% sensitivity and 64% specificity, and when combined with standardized psychological assessments, performance improved up to \geq 85% for both sensitivity and specificity. Moreover, this panel was able to discriminate effectively between IBS-C and IBS-D⁴⁰. Among the most useful markers identified in this study were histamine, related to mast cell activation; anti-tTG, a marker of antibody expression; and NGAL, involved in mucosal regeneration and molecular transport. Additional markers evaluated included IL-6, an important inflammatory mediator; vasoactive intestinal peptide receptor 1 (VIPR1), associated with inflammation and motility; and TWEAK, involved in inflammation, motility, and tissue repair. Furthermore, gene-expression markers such as RNF26 (ring finger protein 26), ZNF326 (zinc finger protein 326), and MICALL-1 (MICAL-1-like gene) were analyzed, all of which are associated with tight junctions and epithelial barrier function⁴⁰. Thus, the panel proposed by Jones et al⁴⁰ evaluates biomarkers related to multiple pathophysiological mechanisms of IBS, including low-grade inflammation, epithelial barrier dysfunction, neuroimmune alterations, mast cell activation, and peripheral gene regulation. In addition, it integrates genes and proteins that, when combined with psychological variables, reinforce the biopsychosocial model of IBS. Therefore, this study proposes a model that differentiates IBS from healthy individuals as well as from other organic gastrointestinal diseases, with adequate accuracy40.

On the other hand, certain studies have demonstrated elevated levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF- α), as well as decreased levels of the anti-inflammatory cytokine IL-10, in the blood of patients with IBS compared with healthy subjects⁴¹. Similarly, it has been reported that patients with immune alterations also experience faster intestinal transit compared with those without immune activation⁴². Moreover, a positive correlation exists between TNF- α levels and decreased stool consistency, while elevated IL-6 levels are associated with increased bowel frequency⁴².

In post-infection IBS (PI-IBS) models, such as rats infected with *Campylobacter jejuni*, a phenotype similar to IBS-D has been observed, along with changes to the small-intestinal microbiota⁴³. A key finding in this model was the role of the bacterial cytolethal distending toxin subunit B (CdtB)⁴⁴. Exposure to CdtB induced the

production of specific antibodies, which through cross-reactivity with vinculin—a cellular adhesion protein in the intestine—was linked to altered motility and subsequent small-intestinal bacterial overgrowth⁴³⁻⁴⁵. This led to the development of a serological test for anti-CdtB and antivinculin antibodies⁴⁵.

As noted, biomarkers may be useful not only to distinguish IBS from healthy subjects, but also to differentiate subgroups within IBS. One example is patients who develop IBS following GI infection (PI-IBS). Approximately 10% of individuals who experience acute gastroenteritis subsequently develop persistent symptoms consistent with IBS-D, which characterizes PI-IBS⁴⁶⁻⁴⁸. Based on this preclinical evidence, in 2015 Pimentel et al⁴⁵ conducted a clinical study to evaluate whether anti-CdtB and antivinculin antibodies could be used as diagnostic biomarkers for IBS-D and to differentiate it from other causes of chronic diarrhea, such as celiac disease, inflammatory bowel disease, and from healthy controls. The study found significantly elevated levels of both antibodies in patients with IBS-D. In particular, anti-CdtB antibodies showed good diagnostic performance, with an area under the curve of 0.81, specificity of 91.6%, and a positive predictive value of 81%⁴⁵. In line with these findings, a study in a Mexican population by Schmulson et al⁴⁹ assessed the clinical utility of anti-CdtB and antivinculin antibodies as diagnostic tools in patients with IBS-D and IBS-M. Positivity for at least one of these antibodies was found in 58.8% of IBS-D patients and 33.3% of those with IBS-M. Moreover, patients with a past medical history of PI-IBS showed a higher positivity rate (71.4%) vs non-post-infectious cases (41.7%); although not statistically significant, this finding supports the hypothesis of an immune-mediated mechanism triggered by prior infections⁴⁹. Notably, these biomarkers were not positive in patients with other functional or organic causes of diarrhea, underscoring their diagnostic specificity. These findings support the potential use of anti-CdtB and antivinculin antibodies as complementary tools for the positive diagnosis of IBS-D and to distinguish it from other chronic diarrhea conditions⁴⁹. These are perhaps the most widely used inclusion biomarkers in clinical practice. In the authors' experience, these biomarkers should not replace the Rome diagnostic criteria, but they are useful when patients require objective test results to accept their diagnosis.

Fecal biomarkers are also a noninvasive diagnostic tool in the evaluation of GI disorders. One of their most relevant advantages is their ability to detect inflammatory

activity in the intestinal mucosa, playing an important role in distinguishing IBS from organic diseases such as inflammatory bowel disease (IBD) 37 . An example is fecal calprotectin, the most widely studied parameter for evaluating intestinal inflammation 42 , with a sensitivity of 93% and a specificity of 94% for differentiating IBS from IBD when using 50 $\mu g/g$ of stool as the cutoff point 50,51 . Therefore, a negative fecal calprotectin result would effectively rule out IBD in a patient with suspected IBS, reducing the need for invasive or costly tests such as colonoscopy.

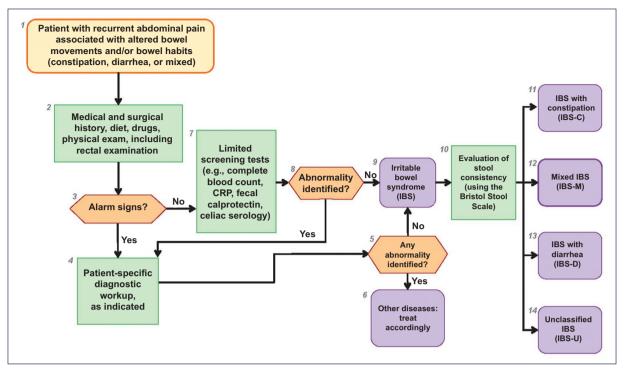
Another important biomarker worth evaluating in patients with IBS-D is fecal bile acids for the assessment of bile acid malabsorption⁵². Under physiological conditions, bile acids are reabsorbed in the ileum and return to the liver via enterohepatic circulation⁵². When this process is disrupted, bile acids can stimulate colonic motility, secretion, and intestinal permeability, leading to diarrhea⁵². Some studies suggest that bile acid malabsorption accounts for up to 30% of IBS-D cases^{53,54}. The gold standard diagnostic test is the 75selenium-homotaurocholic acid (75SeHCAT) retention test; however, this is not available in Mexico⁵⁵. Alternatively, 48-hour fecal bile acid quantification is often used, though the cost may reach up to USD 825, and samples must be sent abroad for analysis⁵⁵. Consequently, serum levels of $7\alpha C4$ (a metabolite derived from 7α-hydroxylase, the rate-limiting enzyme in bile acid synthesis) have shown favorable results for screening bile acid malabsorption, representing up to a 50% cost reduction for patients in Mexico, according to local experience⁵⁵. Although bile acid malabsorption is not the sole cause of IBS-D, investigating this condition represents an important diagnostic and therapeutic strategy, as patients may benefit from bile acid sequestrants⁵⁶.

The study of short-chain fatty acids (SCFAs) has emerged as a promising approach in the evaluation of intestinal microbiota alterations in IBS.⁵⁷ These include acetate, propionate, and butyrate, microbial fermentation products in the gastrointestinal tract, whose levels may influence intestinal inflammation⁵⁷. Farup et al⁵⁸ reported altered butyrate and propionate levels in IBS patients vs controls, with a sensitivity of 92% and specificity of 72%, using a cutoff > 0.015 mmol/L; thus, an increased propionate-to-butyrate difference may reflect dysbiosis or altered bacterial fermentation in IBS patients. Other studies have assessed the clinical utility of combining fecal and blood biomarkers for IBS diagnosis, though this lies beyond the scope of this review⁵⁹.

Research into novel biomarkers for IBS is ongoing. Fecal metabolomic analysis has emerged as a promising tool for identifying IBS biomarkers, with notable candidates including chromogranin A and secretogranin III^{60,61}. Another promising line of research is volatilomics, focusing on volatile organic compounds, low-molecular weight, highly volatile metabolites⁶². Microbiome studies have also gained relevance, identifying altered patterns such as increased *Firmicutes* and decreased *Bacteroides* in IBS patients⁶³⁻⁶⁵. Similarly, microRNAs (miRNAs) have emerged as potential biomarkers due to their regulatory role in gene expression; for instance, miRNA-24 reduces expression of the serotonin transporter, a mechanism associated with increased IBS symptom severity⁶⁶.

Since no single biomarker for IBS has yet been identified, symptom-based diagnosis using the Rome IV criteria remains fundamental. Nonetheless, the integration of metabolomic, microbial, immunologic, and genetic data represents a promising pathway toward personalized medicine. Validation of these biomarkers across diverse populations and their incorporation into clinical practice will enable more accurate diagnoses, better follow-up, and more effective therapeutic strategies for patients with IBS.

Diagnostic algorithm and multidimensional clinical profile


Since there is no biomarker or specific test to confirm or rule out the diagnosis of IBS, the Rome IV guidelines state that the diagnosis of IBS requires a meticulous approach, limited diagnostic testing, and careful follow-up²⁹. For this purpose, the Rome Foundation developed diagnostic algorithms for GI symptoms⁶⁷, providing a practical, efficient, and cost-effective method to diagnose common GI disorders. These algorithms begin with GI symptoms; for example, in IBS, they start with recurrent abdominal pain associated with altered bowel habits, followed by the necessary diagnostic tests, and ending with the diagnosis of IBS and its subtypes. This information is the first step in the clinician's decision-making process for establishing the diagnosis of a disorder of DGBI. Figure 2 illustrates the diagnostic algorithm for IBS.

The second component is the therapeutic management of IBS. Although the Rome IV criteria provide a solid foundation for reaching a consistent diagnosis of IBS, by themselves they do not encompass all the dimensions of the patient's clinical status. For this

reason, the Rome Foundation developed the MDCP, which captures the full range of signs in patients with DGBIs, thereby allowing individualized treatment for each case⁶⁸. The MDCP includes 5 categories with emphasis on IBS:

- Categorical diagnosis: Rome IV criteria for IBS.
- Clinical modifiers: IBS subtype (IBS-C, IBS-D, IBS-M, IBS-U, and PI-IBS); FODMAP (fermentable oligo-, di-, monosaccharides, and polyols) sensitivity; gluten sensitivity; and presence of subjective or objective/ visible abdominal distension.
- Self-perceived severity or impact on daily life: mild, moderate, or severe, according to the question: "How much does the disorder affect your daily life?"
- Psychosocial modifiers: may be categorical (according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition), dimensional (Hospital Anxiety and Depression Scale [HADS], psychological alarm signs such as anxiety or depression), or patient-reported (history of physical or sexual abuse).
- Physiological modifiers and clinically relevant biomarkers: physiological or biochemical parameters that improve diagnostic understanding or influence management (eg, anorectal manometry; colonic transit studies; visceral sensitivity via barostat; evidence of inflammation from biochemistry, histology, fecal calprotectin, cytokines, mRNA, or celiac serology; autoimmunity markers such as anti-CdtB and antivinculin; and other tests such as bile acid malabsorption, intestinal permeability, fecal tryptase, and intestinal microbiota). It should be noted that in IBS, biomarker application remains very limited, as previously mentioned.

Let us consider an example of the application of the MDCP in a case report of IBS. This is a 32-year-old woman, single, employed in a law firm, who presented with a 2-year history of diarrhea along with abdominal pain, bloating, and occasional flatulence. The symptoms had been intermittent, but she reported that over the last year they had become more frequent and increasingly interfered with her quality of life. She reported abdominal pain at least 3 days per week. which was exacerbated by work-related stress, especially during tax season deadlines. The pain was relieved by bowel movements and was occasionally accompanied by subjective abdominal distension. She further noted that at least 50% of her bowel movements were abnormal and corresponded to loose stools, sometimes associated with urgency. In recent months, she also reported difficulty concentrating, a

Figure 2. Rome IV diagnostic algorithm for recurrent abdominal pain with altered bowel habits. CRP: C-reactive protein.

sensation of "brain fog" or mental slowness, which she described as frustrating and at times interfering with her work performance. These episodes tended to coincide with days of greater digestive discomfort. The patient stated that these symptoms had moderately affected her daily activities. On directed questioning, she reported that for the past year she had experienced increased stress, as she had begun preparations for her wedding. Her HADS score was 11 for anxiety and 5 for depression. Previous laboratory tests, including thyroid panel, celiac serology, fecal calprotectin, and Giardia antigens all turned out negative. Upper endoscopy and colonoscopy with biopsies were normal, showing no evidence of intestinal malabsorption or microscopic colitis. On physical examination, vital signs were within normal ranges, body mass index was 22.1 kg/m², and there was abdominal tenderness without peritoneal irritation or palpable masses. There were no alarm features or family history of inflammatory bowel disease, celiac disease, or colon cancer. A 7α C4 test was ordered and returned positive. Clinical findings were consistent with IBS-D according to the Rome IV criteria in a young patient, with no alarm features, no relevant family history, and negative

testing for organic causes. The clinical course, along with exclusion of other etiologies such as celiac disease, microscopic colitis, parasitic infections, and inflammatory bowel disease, supported this initial suspicion. Similarly, the positive $7\alpha C4$ result suggested the presence of bile acid malabsorption, a functional disorder underlying IBS-D in up to 30% of these patients⁵³. Overall, the clinical presentation, the impact on quality of life, and the positive $7\alpha C4$ test point toward a diagnosis of IBS-D due to bile acid malabsorption. The explanation of the MDCP categories for this case is presented in Table 3. The MDCP allows us to categorize this patient as IBS-D with subjective bloating and urgency, moderate severity, anxiety and emotional stress, and bile acid malabsorption evidenced by 7α C4. Although this review is not intended to address treatment, it should be noted that in this case empirical treatment with bile acid sequestrants. such as cholestyramine or colesevelam, would be recommended, with follow-up to assess clinical response. Monitoring of psychological symptoms and emotional impact is also advised, given the frequent interaction between gastrointestinal symptoms and the psychosocial status of these patients.

Table 3. Example of a clinical case and application of the multidimensional clinical profile

Category	Explanation of the clinical case	
Category A: categorical diagnosis	The patient meets the Rome IV criteria for IBS, as she has abdominal pain at least once a week related to defecation and changes in stool appearance, with symptoms lasting > 6 months	
Category B: clinical modifiers	IBS-D, since more than 25% of bowel movements are liquid and less than 25% are hard, according to the Bristol scale. In addition, the patient reports additional symptoms, such as subjective abdominal distension, bloating, flatulence, and occasional urgency to defecate, which, although not part of the diagnostic criteria, are relevant to the clinical and therapeutic approach	
Category C: personal impact	The patient responded "moderately" to the question: "Overall, to what extent do your symptoms interfere with your activities (work, school, social activities, self-care, concentration, and performance)?". This level of impact should be considered when deciding on the intensity of treatment and the need for a comprehensive approach	
Category D: psychosocial modifiers	Clinical anxiety and emotional stress associated with multiple stressors. The stress of planning her wedding appears to be a triggering and perpetuating factor for her symptoms in the context of the gut-brain axis. These factors are relevant for the design of therapeutic strategies that include psychoeducational components or psychotherapeutic interventions	
Category E: physiological modifiers and biomarkers	7α C4 positive: indicates bile acid malabsorption. This finding allows for more accurate stratification according to pathophysiology and a specific therapeutic opportunity through the use of bile acid sequestrants	

D: diarrhea; IBS: irritable bowel syndrome.

Conclusions

The diagnosis of IBS is fundamentally based on the Rome IV criteria, which identify patients through cardinal symptoms such as recurrent abdominal pain associated with altered bowel habits and stool consistency. These criteria were developed to standardize patient selection for research, whether epidemiologic studies or clinical trials. In clinical practice, they should be used as a diagnostic guide, although clinical criteria based on Rome IV allow shortening of the diagnostic timeline when physicians are confident based on prior evaluations. Additionally, the Rome Foundation has developed diagnostic algorithms to guide the evaluation of patients with different DGBIs. Finally, by encompassing all relevant dimensions of DGBIs, the MDCP allows a comprehensive characterization of patients, facilitating the choice of personalized therapeutic strategies and optimizing long-term outcomes. In this context, the development of biomarkers may contribute in the future to better patient characterization. Although biomarkers have not yet replaced clinical criteria (Rome IV), their validation and progressive incorporation into medical practice may transform the diagnostic and therapeutic approach to IBS.

Funding

This work was partially funded by the Research Division of the School of Medicine, *Universidad Autónoma de Mexico*. G. Mendoza-Domínguez declared

having received a postgraduate fellowship from SECIHTI (CVU: 2094907). A.S. Morales-Guzmán declared having received a postgraduate fellowship from SECIHTI (CVU: 1141922).

Conflicts of interest

C.L. Cruz-Rico, G. Mendoza-Domínguez, S.A. Zaragoza-Galicia, and A.S. Morales-Guzmán declare no conflicts of interest. M.J. Schmulson: Advisory Board for Daewoong Korea, Gemelli Biotech Inc, Moksha 8 Mexico, Pro.Med.CS Prague; speaker for Alfa Sigma Mexico, Armstrong Mexico, Carnot, Daewoong Korea, Ferrer Mexico/Central America, Medix Mexico, Megalabs, Moksha 8 Mexico, Ecuador, Tecnofarma Colombia/Bolivia; educational materials for Moksha 8 Mexico.

Ethical considerations

Protection of humans and animals. The authors declare that no experiments on humans or animals were conducted for this review.

Confidentiality, informed consent, and ethical approval. This review does not involve personal patient data and does not require ethical approval. The SAGER guidelines do not apply.

Declaration on the use of artificial intelligence. The authors declare that artificial intelligence was used in the preparation of this manuscript. ChatGPT

was employed for drafting the abstract in order to meet the established word limit, as well as for assistance in writing and style editing in the section on biomarkers and diagnostic tests. All content was carefully reviewed by the authors. Artificial intelligence was not used for data collection, analysis, or figure generation.

References

- 1. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology. 2016:S0016-5085(16)00223-7
- Schmulson MJ, Puentes-Leal GA, Bustos-Fernández L, Francisconi C, Hani A, López-Colombo A, et al. Comparison of the epidemiology of disorders of gut-brain interaction in four Latin American countries: results of The Rome Foundation Global Epidemiology Study. Neurogastroenterol Motil. 2023;35:e14569.
- 3. Everhart JE, Renault PF. Irritable bowel syndrome in office-based practice in the United States. Gastroenterology. 1991;100:998-1005.
- Almansa C, Díaz-Rubio M, Rey E. The burden and management of patients with IBS: results from a survey in Spanish gastroenterologists. Rev Esp Enferm Dig. 2011;103:570-5.
- Miranda-Guzmán YA. Schmulson-Waaserman MJ. La diarrea v los síntomas relacionados con distensión/gas abdominal son los primeros motivos de consulta al gastroenterologo en la clínica. Rev Gastroenterol Mex. 2023;88(Supl 1):17.
- Lacy BE, Mearin F, Chang L, Chey WD, Lembo AJ, Simren M, et al. Bowel disorders. Gastroenterology. 2016;150:1393-407.e5.
- Klein KB. Controlled treatment trials in the irritable bowel syndrome: a critique. Gastroenterology. 1988;95:232-41.
- Drossman DA, Tack J. Rome Foundation clinical diagnostic criteria for disorders of gut-brain interaction. Gastroenterology. 2022;162:675-9.
- Schmulson MJ, Drossman DA. What is new in Rome IV. J Neurogastroenterol Motil. 2017;23:151-63.
- Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology. 2021;160:99-114.e3.
- The European Society for Primary Care Gastroenterology. Rome V. 2021. Disponible en: https://www.espcg.eu/rome-v/.
 Sawada A, Sifrim D, Fujiwara Y. Esophageal reflux hypersensitivity: a
- comprehensive review. Gut Liver. 2023;17:831-42.
- Corsetti M. Van Oudenhove L. Tack J. The guest for biomarkers in IBS - where should it lead us? Neurogastroenterol Motil. 2014;26: 1669-76.
- Camilleri M. Boeckxstaens G. Irritable bowel syndrome: treatment based on pathophysiology and biomarkers. Gut. 2023;72:590-9.
- Black CJ, Yiannakou Y, Guthrie EA, West R, Houghton LA, Ford AC. A novel method to classify and subgroup patients with IBS based on gastrointestinal symptoms and psychological profiles. Am J Gastroenterol. 2021:116:372-81.
- Tornkvist NT, Palsson OS, Hreinsson JP, Törnblom H, Cash BD, Corsetti M, et al. Tu1624 effects of changes in the diagnostic criteria for irritable bowel syndrome (IBS) on global prevalence rates-results from the Rome Fundation Global Epidemiology Study. Gastroenterology. 2023;164:S-1061-2.
- 17. Duncanson K, Tikhe D, Williams GM, Talley NJ. Irritable bowel syndrome controversies in diagnosis and management. Expert Rev Gastroenterol Hepatol. 2023;17:649-63.
- Camilleri M. Diagnosis and treatment of irritable bowel syndrome: a review. JAMA. 2021;325:865-77.
- 19. Jones MP, Shah A, Walker MM, Koloski NA, Holtmann G, Talley NJ. Overlap of heartburn, functional dyspepsia, and irritable bowel syndrome in a population sample: prevalence, temporal stability, and associated comorbidities. Neurogastroenterol Motil. 2022;34:e14349.
- 20. Schmulson M, Vargas JA, López-Colombo A, Remes-Troche JM, López-Alvarenga JC. Prevalence and clinical characteristics of the IBS subtypes according to the Rome III criteria in patients from a clinical, multicentric trial. A report from the Mexican IBS Working Group, Rev Gastroenterol Mex. 2010;75:427-38.
- 21. Aziz I, Simrén M. The overlap between irritable bowel syndrome and organic gastrointestinal diseases. Lancet Gastroenterol Hepatol. 2021;6:139-48.
- 22. Riedl A, Schmidtmann M, Stengel A, Goebel M, Wisser AS, Klapp BF, et al. Somatic comorbidities of irritable bowel syndrome: a systematic analysis. J Psychosom Res. 2008;64:573-82.

- 23. Koloski NA, Jones M, Talley NJ. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment Pharmacol Ther. 2016;44:592-600.
- 24. Schmulson MJ. Síndrome de intestino irritable. En: Valdovinos MA, Remes Troche JM, Coss Adame E, editores. Neurogastroenterología y motilidad gastrointestinal en la práctica clínica. Ciudad de México: Permanyer; 2017. p. 145-53.
- Patel P, Bercik P, Morgan DG, Bolino C, Pintos-Sánchez MI, Moayyedi P, et al. Prevalence of organic disease at colonoscopy in patients with symptoms compatible with irritable bowel syndrome: cross-sectional survey. Scand J Gastroenterol. 2015;50:816-23.
- Ford AC, Veldhuyzen Van Zanten SJO, Rodgers CC, Talley NJ, Vakil NB, Moayyedi P. Diagnostic utility of alarm features for colorectal cancer: systematic review and meta-analysis. Gut. 2008;57:1545-52.
- 27. Carmona-Sánchez R, Icaza-Chávez ME, Bielsa-Fernández MV, Gómez-Escudero O, Bosques-Padilla F, Coss-Adame E, et al. Consenso mexicano sobre el síndrome de intestino irritable. Rev Gastroenterol Mex. 2016:81:149-67.
- 28. Schmulson-Wasserman MJ. Perfil clinico multidimensional (PCMD) para el abordaie de los trastornos de la interacción intestino-cerebro: SII. En: X Gastrotrilogía: Nuevos horizontes en trastornos funcionales gastrointestinales. Ciudad de México: CLAVE Editorial: 2017, p. 157-62
- Moayyedi P, Mearin F, Azpiroz F, Andresen V, Barbara G, Corsetti M, et al. Irritable bowel syndrome diagnosis and management: a simplified algorithm for clinical practice. United European Gastroenterol J. 2017:5:773-88
- 30. Lacy BE, Pimentel M, Brenner DM, Chey WD, Keefer LA, Long MD, et al. ACG Clinical Guideline: management of irritable bowel syndrome. Am J Gastroenterol. 2021;116:17-44.
- 31. Huang KY, Wang FY, Lv M, Ma XX, Tang XD, Lv L. Irritable bowel syndrome: epidemiology, overlap disorders, pathophysiology and treatment. World J Gastroenterol. 2023;29:4120-35.
- Nakov R, Snegarova V, Dimitrova-Yurukova D, Velikova T. Biomarkers in irritable bowel syndrome: biological rationale and diagnostic value. Dig Dis. 2022;40:23-32.
- 33. Ford AC. Sperber AD. Corsetti M. Camilleri M. Irritable bowel syndrome. Lancet. 2020:396:1675-88.
- Camilleri M, Boeckxstaens G. Irritable bowel syndrome: treatment based on pathophysiology and biomarkers. Gut. 2023;72:590-9.
- Hanna-Jairala I, Puentes-Leal G, Madrid A, Aguilar-Paiz L, Suazo-Barahona J, Remes-Troche J, et al. Encuesta en gastroenterólogos de Latinoamérica expertos en trastornos del eje intestino-cerebro sobre el diagnóstico y tratamiento del síndrome de intestino irritable en la práctica clínica. Rev Gastroenterol Mex. 2025; en prensa.
- Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243:213-21.
- Vakili O, Adibi Sedeh P, Pourfarzam M. Metabolic biomarkers in irritable bowel syndrome diagnosis. Clin Chim Acta. 2024;560:119753.
- Spiller RC. Potential biomarkers. Gastroenterol Clin North Am. 2011:40:121-39
- Lembo AJ, Neri B, Tolley J, Barken D, Carroll S, Pan H. Use of serum biomarkers in a diagnostic test for irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29:834-42.
- Jones MP, Chey WD, Singh S, Gong H, Shringarpure R, Hoe N, et al. A biomarker panel and psychological morbidity differentiates the irritable bowel syndrome from health and provides novel pathophysiological leads. Aliment Pharmacol Ther. 2014;39:426-37.
- Schmulson M, Pulido-London D, Rodríguez O, Morales-Rochlin N, Martínez-García R. Gutiérrez-Ruiz MC. et al. Lower serum IL-10 Is an independent predictor of IBS among volunteers in Mexico. Am J Gastroenterol. 2012;107:747-53.
- Nakov R, Snegarova V, Dimitrova-Yurukova D, Velikova T. Biomarkers in irritable bowel syndrome: biological rationale and diagnostic value. Dig Dis. 2022;40:23-32
- Pimentel M, Chatterjee S, Chang C, Low K, Song Y, Liu C, et al. A new rat model links two contemporary theories in irritable bowel syndrome. Dig Dis Sci. 2008;53:982-9.
- Pokkunuri V, Pimentel M, Morales W, Jee SR, Alpern J, Weitsman S, et al. Role of cytolethal distending toxin in altered stool form and bowel phenotypes in a rat model of post-infectious irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:434-42.
- Pimentel M, Morales W, Rezaie A, Marsh E, Lembo A, Mirocha J, et al. Development and validation of a biomarker for diarrhea-predominant irritable bowel syndrome in human subjects. PLoS One. 2015;10:e0126438.
- Thabane M, Kottachchi DT, Marshall JK. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26:535-44.
- 47. Shah ED, Riddle MS, Chang C, Pimentel M. Estimating the contribution of acute gastroenteritis to the overall prevalence of irritable bowel syndrome. J Neurogastroenterol Motil. 2012;18:200-4.

- Halvorson HA, Schlett CD, Riddle MS, Al-Haddad M. Postinfectious irritable bowel syndrome a meta-analysis. Am J Gastroenterol. 2006;101:1894-9.
- Schmulson M, Balbuena R, Corona de Law C. Experiencia clínica con el uso de los anticuerpos anti-CdtB y anti-vinculina en pacientes con diarrea en México. Rev Gastroenterol Mex. 2016:8:236-9.
- Gerova V, Nakov R. Faecal calprotectin is a reliable non-invasive marker for assessment of intestinal inflammation in patients with irritable bowel syndrome. C R Acad Bulg Sci. 2013;66:1339-44.
- Waugh N, Cummins E, Royle P, Kandala NB, Shyangdan D, Arasaradnam R, et al. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: systematic review and economic evaluation. Health Technol Assess. 2013;17:1-211.
- Camilleri M, Vijayvargiya P. The role of bile acids in chronic diarrhea. Am J Gastroenterol. 2020;115:1596-603.
- Valentin N, Camilleri M, Altayar O, Vijayvargiya P, Acosta A, Nelson AD, et al. Biomarkers for bile acid diarrhoea in functional bowel disorder with diarrhoea: a systematic review and meta-analysis. Gut. 2016;65:1951-9.
- 54. Wedlake L, A'Hern R, Russell D, Thomas K, Walters JRF, Andreyev HJN. Systematic review: the prevalence of idiopathic bile acid malabsorption as diagnosed by SeHCAT scanning in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2009;30:707-17.
- Mendoza-Domínguez G, Garrido-Santos ZM, Lau C, Balbuena R, Santana-Vargas AD, Schmulson-Wasserman M. Real-world experience with the diagnosis of bile acid malabsorption (BAM) using serum 7-alpha-C4 and 48-hour stool bile acids. Rev Gastroenterol Mex. 2025; https://doi.org/10.1016/j.rgmx.2024.08.006.
- Camilleri M, Acosta A, Busciglio I, Boldingh A, Dyer RB, Zinsmeister AR, et al. Effect of colesevelam on faecal bile acids and bowel functions in diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2015;41:438-48.
- Natarajan N, Pluznick JL. From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. Am J Physiol Cell Physiol. 2014;307:C979-85.

- Farup PG, Rudi K, Hestad K. Faecal short-chain fatty acids a diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol. 2016;16:51.
- Mujagic Z, Tigchelaar EF, Zhernakova A, Ludwig T, Ramiro-García J, Baranska A, et al. A novel biomarker panel for irritable bowel syndrome and the application in the general population. Sci Rep. 2016;6:26420.
- Öhman L, Stridsberg M, Isaksson S, Jerlstad P, Simrén M. Altered levels
 of fecal chromogranins and secretogranins in IBS: relevance for pathophysiology and symptoms. Am J Gastroenterol. 2012;107:440-7.
- El-Salhy M, Lomholt-Beck B, Hausken T. Chromogranin a as a possible tool in the diagnosis of irritable bowel syndrome. Scand J Gastroenterol. 2010;45:1435-9.
- Romano A, Capozzi V, Spano G, Biasioli F. Proton transfer reaction–mass spectrometry: online and rapid determination of volatile organic compounds of microbial origin. Appl Microbiol Biotechnol. 2015;99:3787-95.
- Rodiño-Janeiro BK, Vicario M, Alonso-Cotoner C, Pascua-García R, Santos J. A review of microbiota and irritable bowel syndrome: future in therapies. Adv. Ther. 2018;35:289-310.
- therapies. Adv Ther. 2018;35:289-310.

 64. Ianiro G, Eusebi LH, Black CJ, Gasbarrini A, Cammarota G, Ford AC. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2019;50:240-8.
- Barbara G, Ianiro G. Faecal microbial transplantation in IBS: ready for prime time? Gut. 2020;69:795-6.
- Liao XJ, Mao WM, Wang Q, Yang GG, Wu WJ, Shao SX. MicroRNA-24 inhibits serotonin reuptake transporter expression and aggravates irritable bowel syndrome. Biochem Biophys Res Commun. 2016; 469:288-93.
- Kellow J, Drossman DA, Chang L, Chey WD, Tack J, Whitehead WE, et al. Rome IV diagnostic algorithms for common GI symptoms. 2nd ed. North Carolina, USA: Rome Foundation; 2021.
- Drossman DA, Tack J, Chang L, Nurko S, Schmulson MJ, Simrén M, et al. Multidimensional clinical profile (MDCP) for disorders of gut-brain interaction. 3rd. ed. North Carolina, USA: Rome Foundation; 2021.